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Abstract The level spacing disuibutions of a confined ZDEO (w electron gas) in a strong 
magnetic field are studied. As long as the Landau bands do not overlap the distribution statistics 
exhibit a sharp msi t ion  in the vicinity of the edge states. The level spacing distribution between 
the pair of edge states follow lhe Poisson statistics while the level spacing in their vicinity is 
non-universal. 

The statistical properties of the energy spectrum of disordered electronic systems have been 
the subject of many investigations 11-14]. These properties are usually described in terms 
of the eigenvalue properties of random matrices, first used by Wigner and Dyson to describe 
the spectrum properties of complex nuclei [15-171. For a system which is metallic the level 
spacing follows a particular form of Wigner statistics (GOB, GUE or GSE) depending on the 
symmetry of the system. The level spacing statistics are given by 

where s is the energy separation between two consecutive levels in units of the mean level 
spacing A. For a metallic system which has a time reversal symmetry GOE level spacing 
statistics is observed, while for a system where time reversal symmetry is broken (for 
example in the presence of a magnetic field) CUE level spacing statistics emerge. GSE level 
spacing distribution follows for cases in which spin-orbit scattering is present. Once the 
system is localized Poisson statistics, 

Pp(s) = exp(-s) (2) 

is observed. 
Recently, many studies on the crossover between the different statistical ensembles have 

been performed. A crossover between GOE and Poisson distributions as a function of disorder 
was observed by several authors 17-91, In the crossover region the distribution is described 
as a superposition of WE and Poisson sequences [7,8], or using a phenomenological 
distribution which in the limiting cases goes to GOE or Poisson distributions [9]. In a 
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recent theoretical study Kravtsov et a1 [lo] suggest that at the mobility edge the distribution 
should take a new form which depends on dimensionality. The crossover between the GOE 
and the CUE distributions as a function of an AB (Aharonov-Bohm) flux was studied by 
Dupuis and Montambaux [ 1 I]. The crossover region is fitted to a distribution obtained by 
Pandry and Metha [18] where the crossover distribution is studied using the combination 
of symmetric and antisymmetric 2 x 2 matrices. 

For a ZDEG in the presence of a strong magnetic field the situation is even more 
complicated. One expects that close to the centre of the Landau band the distribution 
will correspond to GUE statistics since the states for a finite sample are expected to be 
extended and the time reversal symmetry is broken [12-141. In the tails the states are 
localized, therefore, the level spacing statistics follow Poisson. Numerical investigations of 
the lowest Landau level performed by Ono et a1 [13,14] show that the pure CUE form is 
never really obtained since for short trajectories, which determine the tail of the distribution, 
time reversal is not completely broken and the tail of the distribution corresponds to GOE. 
This effect is even more pronounced moving out of the centre of the Landau band, where 
the distribution is fitted to a crossover from G m  to GOE form. 

In this paper we shall mainly consider the behaviour of the level spacing distribution 
near the tail of the Landau band. In contrast to the previous work [12-14] we shall consider 
a system which has a confining hard wall potential namely the Laughlin geometry. In the 
Laughlin geometry the 2D system is represented by a cylinder of circumference L, and 
height L, subject to a transverse constant magnetic field H as is shown in figure 1. The 
energy spectrum of such a system has several states in between the Landau bands, commonly 
referred to as edge states. Those states have several interesting properties. The electron 
density is concentrated along the edge of the sample, but the wavefunction is extended 
in the direction parallel to the edge, i.e., it may carry current in the i direction once a 
flux threads the system. Classically these states correspond to trajectories bouncing off 
the edge. Those states interact very weakly with phonons [19,20] and have a very long 
inelastic scattering time. We shall see that the special properties of edge states will lead to 
a non-trivial behaviour of the level spacing distributions in their vicinity. 
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Figure 1. The sample geomeuy. A two-dimensional 
cylinder with circumfereoce LI and height L,. The metal 
is threaded by a static magnetic flux 0 in the y direction and 
transverse uniformly magnetic field H normal lo h e  sample 
a m  The classical trajectories of edge slates bouncing off 
the cylinder's edge are illustrated. 

\ 

For non-interacting electrons, the system may be described by the Hamiltonian 



Edge states in the energy level distribution of a ZDEC 4739 

where e, denotes a unit vector in the x direction. The random potential V ( r )  is assumed 
to be a Gaussian-distributed white noise, defined by 

( ~ ( r ) )  = 0 (V(T)V(T')) = y 6 ( r  - r') (4) 

where (. . .) denotes averaging over realizations of a disorder potential, y = huF/ZxlN(p), 
N(@) is the averaged density of states at the Fermi energy p. UF is the Fermi velocity and 
l is the elastic mean free path. For y = 0, L, hard-wall boundary conditions are assumed 
while in the longitudinal direction periodic boundary conditions ( x ,  x + L,) are taken into 
account. 

For the numerical calculations we shall use a tight-binding Hamiltonian in the Landau 
gauge which represents the same system [21-231 

where 6 k . j  is the energy of a site located in the jth row (x axis) and kth column (y 
axis), which is chosen randomly between -W/2 and W/2,  V is a constant hopping matrix 
element. The phase B(k) = 2xHks2/& (s is the distance between sites and r$,, = hc/e 
is the flux quantum) stems from the transverse magnetic field. This Hamiltonian is then 
exactly diagonalized, and the energy spectrum is then obtained. 

The typical sample sizes in the numerical calculation are 10 x 20 sites. The level 
spacing distribution was usually calculated for 500 different realizations of disorder, where 
the disorder strengths were chosen as W = V and 2V. The level spacing distribution was 
calculated for different values of the magnetic field H = 0.2 and 0.4r$0/s~. Since one flux 
per lattice plaquet (where the distance between tight-binding sites is estimated for a typical 
density of carriers in a 2DEG p - 4 x IO" as s - l / f i  - 200 A) corresponds to a 
magnetic field of about 10 T, these values of magnetic field are within the usual range used 
in quantum Hall effect experiments. 

Qpical numerical results for the averaged energy levels are presented in figure 2. The 
specmm is symmetric around E = 0 because of the basic particle-hole symmetry of this 
model. The edge states are clearly seen in the gap between the bulk states as can be expected 
from the appearance of the Landau quantization. The mean energy level spacing A depends 
strongly on the level number, and drastically changes around the edge states. 

The states close to the centre of any Landau band obey the CUE distribution except 
for the tail of the distribution which follows a GOE like behaviour. This is in agreement 
with the results of Ono et al [13,14] which were obtained for the lowest Landau level and 
periodic boundary conditions. As the levels approach the edge of the band the distribution 
acquires more GOE characteristics. 

In figure 3 we present a typical sequence of level spacing distributions between the 
first and second Landau bands. It is obvious that there are strong changes in the level 
spacing distributions between consecutive levels. One can see that for some of the levels 
the distribution follows Poisson (levels 38-39, 40441). for others COE (42-43), and for 
others the distribution is not at all clear (37-38, 39-40, 41-42). Our aim is to explain this 
complicated behaviour of the distributions in the tail region between the Landau bands. 

As a starting point we chose to study the case of a rather strong magnetic field 
(H = 0.4r$o/s2). The DOS (density of states) in the absence of disorder is shown in 
figure 4(a). Once disorder is introduced into the system, clear Landau bands appear in the 
DOS (figure 4(b)). The edge states clearly appear in the DOS of the disordered system as a 
small peak in the DOS in between the Landau bands. 
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Figure 2. The numerical results of the energy spectrum EN as a function of the level number 
for a 10 x 20, W = 211 sample in the presence of a magnetic field. (a) H = 0.2&/o/s2, @) 
H = 0.4&)/s*. 

The level spacing distribution for this case is presented in figure 5. The dishbution 
between the original edge states (levels 8&81) follows an almost perfect Poisson 
distribution. This stems from the fact that in contrast to the bulk states, the pair of edge 
states, although extended in the .? direction, are localized near the edges of the sample one 
at y = 0 and the second at y = L,. Therefore, the overlap between the eigen-functions 
is extremely small, resulting in a Poisson distribution. This is an interesting twist of the 
usual situation in disorder systems where extended current carrying levels follow a GOE- 
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Figure 3. The level spacing disuibution for differed energy 
levels for a W = V ,  H = O.%/sz sample. 
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Figure 4. Numerical results lor the DOS 

for a w d y  disordered sample W = 
ZV,  H = 0.4$0/s'. The vertical lines 
represent the positions of the energy 
levek in lhe ordered case (W = 0). 

GUE distribution. This can be also understood from considering the classical trajectories 
corresponding to the edge states illustrated in figure 1. Those trajectories which constantly 
bounce off the edge are expected to exhibit a rather regular behaviour, which from the 
postulate of 'quantum chaos' t24.251 should lead to a Poisson distribution. 

The spacing between the edge states and their adjacent levels (levels 79-80, 81-82) is 
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Figure 5. The level spacing distribution for different 
energy levels mund the edge states (see figure 2@)) 
for a w = 2 ~ .  fi = 0.&3]s2 sample. 

non-universal. This non-universality is the remanent of the original gap between the edge 
states and the Landau bands which is still clearly seen in the DOS of the system (figure 4(a)). 
The levels which belong to the Landau bands (levels 78-79, 82-83) exhibit a GOE Poisson 
crossover behaviour typical of states in the tail of the band [13,14]. 

This typical distribution structure also provides the explanation for the complicated 
structure seen in figure 3. Levels 38,39 and 40.41 are edge states, and therefore their 
spacing distribution follows Poisson statistics. The spacings between different couples of 
edge states, and between them and other Landau band states is non-universal which explains 
the unusual distributions seen for levels 37-38, 39-40 and 41-42. The last pair of levels 
(4243) belongs to the Landau band and have the expected COB distribution. 

As the two Landau bands start to overlap, which may be caused by broadening due to 
a stronger disorder or due to the fact that one considers higher bands, the edge states are 
encompassed by the bands and lose their special characteristic. This may be clearly seen 
in figure 6(a) where the level spacing distributions for levels between the first and second 
Landau bands are presented and in figure 6(b) where the distributions for levels between 
the second and third band are shown. In the first case the two bands do not overlap and the 
situation is similar to that for figure 5. where levels 40.41 are the pair of edge states. For 
the second case, the original pair of edge states (81,82) are almost an integral part of the 
Landau bands (as can be seen in figure 2(a)) and have the regular GOE-Poisson crossover 
behaviour. 

In conclusion, for confined electron systems one should be careful in calculating the 
level spacing distributions near the tails of the Landau band. The presence of edge states 
in that region causes strong fluctuations in the dismbutions between consecutive levels. 
Level spacings between pairs of edge states follow a Poisson distribution, while the spacing 
between an edge state and Landau band states or higher edge states are non-universal. 
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Therefore, in this region one should not average the level spacing distributions over several 
level sequences, as is usually done in the Landau band region. 
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